

Qu'est-ce qui change?

Coordination

Delphine Piazza-Morel Assistante projet Nicole Sardat

Responsable communication et infographiste

Rédacteurs

Chercheurs, ingénieurs, techniciens, CDD et doctorants d'Irstea Grenoble

Merci à

Cled'12 pour son aimable participation

Relecture

Marie-Pierre Arlot, Delphine Piazza-Morel, Geneviève Nouvellon, Nicole Sardat

Réalisation

Nicole Sardat

Avec le soutien du projet GICC Adamont et la collaboration du Centre d'Études de la Neige (Météo-France/CNRS)

Photo de couverture : Hervé Bellot Dessins (hors Cled'12) : Nicole Sardat

Octobre 2017

Avant-propos

Ce livret vient en complément du premier livret sur les idées reçues sur les risques naturels en montagne, paru en 2013.

Il aborde la question des idées reçues sur le changement climatique en montagne, sur la base de connaissances acquises dans les projets de recherche menés par les unités du centre Irstea de Grenoble.

Merci aux chercheurs, en lien avec nos partenaires, d'avoir accepté l'exercice difficile d'expliquer des résultats parfois tout en nuance. Merci également à celles et ceux qui ont œuvré à rassembler ces informations, à les illustrer et à les mettre en forme...

Et bonne lecture à tous les curieux de science et de nature.

Marie-Pierre Arlot Directrice régionale, Centre de Grenoble

Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Irstea conduit des recherches répondant aux enjeux posés par la question agro-environnementale dans les domaines

de l'eau, des risques naturels, de l'aménagement du territoire et des écotechnologies.

Pluridisciplinaires, tournées vers l'action et en appui aux politiques publiques, ses activités de recherche et d'expertise impliquent un partenariat fort avec les universités et les organismes de recherche français et européens, les acteurs économiques et les pouvoirs publics.

www.irstea.fr

Grenoble, un Centre tourné vers la montagne

Le centre Irstea de Grenoble développe des recherches et des expertises pour la connaissance et la gestion des territoires, des écosystèmes et des risques naturels en montagne.

Plus d'informations dans cette plaquette téléchargeable : http://www.irstea.fr/linstitut/nos-centres/grenoble

« Politiques et gestion des territoires, des écosystèmes et des risques naturels en montagne. 50 ans de recherche et d'expertise. Irstea, centre de Grenoble »

Sommaire

Intro	En altitude, il faudra toujours sa petite laine	3		Réveil précoce pour les marmottes	2
	Delphine Piazza-Morel	,		Nathan Daumergue La douceur hivernale enchante les marmottes	2
	Fini, les avalanches! Nicolas Eckert	4		Nathan Daumergue La vie est plus douce pour les animaux	2
	Moins de neige, moins d'accidents d'avalanches Francois Rapin	5		Sébastien De Danieli Oiseaux bientôt sans domicile	2
S	Il va y avoir davantage de chute de blocs	6	به	Sébastien De Danieli	
E E	Frédéric Berger Gare aux feux de forêt dans les Alpes du Nord	7	anne	Hivers moins frais, oiseaux plus gais Sébastien De Danieli	2
Risques	Sylvain Dupire		T.	La forêt change, quel tracas pour le grand tétras !	2
~	L'érosion torrentielle va s'accélérer Frédéric Liébault	8		Anouk Glad Se camoufler devient compliqué	2
	C'est la chaleur qui fait fondre les glaciers	9		Nathan Daumergue	
	Emmanuel Thibert Les glaciers se réchauffent avec le climat	10		Même à sang froid, on n'aime pas le chaud Étienne Boncourt	2
	Emmanuel Thibert			Déséquilibre en vue au royaume des petits organismes Philippe Janssen	3
a	En 2100, il n'y aura plus de neige	11			
등	Hugues François, Pierre Spandre (Irstea/CEN) Grâce aux enneigeurs, plus de problème de neige!	12	a.	Fini le gel en alpage! Baptiste Nettier	3
<u>t</u> a	Hugues François, Pierre Spandre (Irstea/CEN)		<u>=</u>	Herbe à gogo pour les vaches	3
ᅙ	La montagne, un château d'eau inépuisable Huques Francois, Pierre Spandre (Irstea/CEN)	13	크	Baptiste Nettier, Grégory Loucougaray Une prairie peut en cacher une autre	3
	S'il y a 10 cm de neige, on peut skier	14	링	Baptiste Nettier	
Ö	Hugues François, Pierre Spandre (Irstea/CEN) Produire de la neige de culture à température positive, c'est possible !?	15	Agricul ture	Régime sec pour les moutons François Véron	3
Stations de montagne	Hugues François, Pierre Spandre (Irstea/CEN)		A	Le carbone du sol, régulateurdu climat	3
臺	Les remontées mécaniques à l'abandon dans le futur Coralie Achin	16		Jean-Jacques Brun	
똤	Adieu, les stations de moyenne montagne !	17		La chaleur favorise les invasions biologiques	3
	Coralie Achin		a)	François Martin Tourbières et marais existeront toujours	3
	a sécheresse, véritable danger pour les arbres des Alpes du Nord !	18	g.	Stéphanie Gaucherand Pour la revégétalisation, peu importe l'origine des graines semées	3
ب	Chauffer son chalet au bois, c'est écologique	19	응	Thomas Spiegelberger, Alice Dupré la Tour	_
Forêt	Marc Fuhr En 2100, balade en forêt méditerranéenne dans le Vercors !	20	Écologie	On peut tout réparer, même les écosystèmes ! Renaud Jaunatre	3
T.	Thomas Cordonnier			La fin des éboulis froids	4
	La limite entre forêts et alpages est naturelle et immuable	21		Jean-Jacques Brun	

Partant de ce constat, on aurait vite fait de penser que la montagne est protégée des effets du changement climatique, et que, comme on se trouve en altitude, on ne doit pas

Pourtant, les relevés météos, en particulier les relevés de température compilés depuis plusieurs dizaines d'années, nous montrent que la tendance d'évolution des températures en montagne est beaucoup plus importante <mark>qu'en plaine</mark>. Ainsi, de 1900 à 2016, l'augmentation mesurée pour l'ensemble des Alpes françaises est de +1,97°C <mark>(presque</mark>

Alors certes, même si en montagne, il continue de faire plus frais qu'en plaine, le réchauffement des températures y est pourtant beaucoup plus fort. L'altitude ne préserve pas les massifs alpins du réchauffement et les conséquences peuvent en être lourdes, sur l'écologie comme sur l'économie locale (remontée de l'isotherme zéro, de la limite pluie-neige, sécheresses récurrentes, recul des glaciers, floraison précoce remontée en altitude de certaines espèces...

Fini, les avalanches!

L'activité avalancheuse naturelle est dépendante de la quantité et de la qualité de la neige disponible, et donc, logiquement, sur des échelles de temps plus longues, des fluctuations du climat. Ainsi, si un jour il n'y a plus du tout de neige dans les Alpes, il n'y aura plus d'avalanches!

Cependant, on est encore loin de la disparition des avalanches. Si le réchauffement se poursuit tel que le projettent les modèles climatiques, il y aura sans doute moins d'avalanches, surtout à basse altitude. Elles descendront en moyenne moins bas du fait d'un manteau neigeux plus réduit et plus humide, et les avalanches denses et humides seront plus fréquentes.

Il n'empêche que lors d'épisodes froids et très neigeux, même très ponctuels, des avalanches de grande ampleur pourront sans doute toujours se déclencher comme avant, même à basse altitude. En effet, certains modèles climatiques projettent que le réchauffement moyen s'accompagnera de précipitations hivernales extrêmes plus fortes.

Moins de neige, moins d'accidents d'avalanches...

Moins de neige cumulée en hiver devrait conduire à une réduction moyenne du nombre d'avalanches spontanées.

Mais la relative rareté de la neige sur les montagnes pourrait bien être compensée par une surfréquentation de la montagne juste après les chutes de neige! Ou alors par la pratique d'itinéraires situés en altitude élevée, mais plus pentus, pour rechercher la neige.

Ainsi, au cours des hivers peu enneigés comme en 2016-2017 et surtout en 2005-2006, le bilan des décès était à peine inférieur à la moyenne annuelle, allant même jusqu'à doubler par rapport à cette moyenne.

C'est d'ailleurs souvent le comportement des skieurs qui explique une bonne partie de la prise de risque avalanche!

Il va y avoir davantage de chutes de blocs

Les rochers sont fragilisés par l'infiltration de l'eau dans les fissures et par les variations rapides de température. L'alternance des cycles de gel et de dégel de cette eau est ainsi le principal processus à l'origine des chutes de blocs rocheux. En haute montagne, la fonte du permafrost (sol gelé en permanence) est à l'origine de nombreux éboulements rocheux. L'eau et la température ne font donc pas bon ménage avec les pierres, d'où l'expression « Il gèle à pierre fendre »!

Avec le changement climatique, tous les ingrédients sont réunis pour favoriser le détachement des projectiles rocheux des parois. Et on observe effectivement une augmentation des événements de chutes de blocs depuis le début des années 90. C'est en particulier le cas après des incidents climatiques comme le fort enneigement de l'hiver 1999 et la sécheresse de 2003.

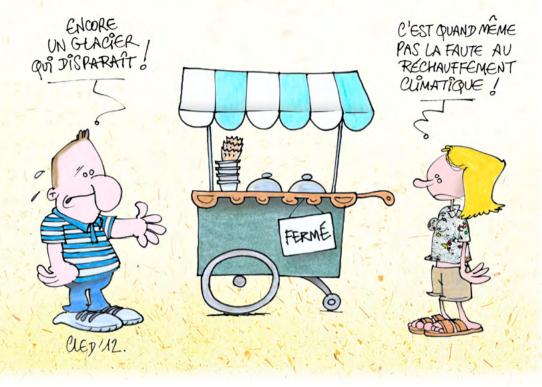
Mais, fort heureusement pour nous, le réchauffement climatique a aussi une conséquence positive en termes de protection contre les chutes de blocs : la remontée de la limite des forêts et l'apparition de feuillus, plus efficaces, en altitude. Ainsi, les remparts naturels que représentent les forêts devraient être plus performants et on peut espérer qu'ils vont pouvoir compenser l'augmentation de la fréquence des départs de projectiles rocheux

Gare aux feux de forêt dans les Alpes du Nord...

L'augmentation régulière des températures est un facteur aggravant du risque d'incendie, mais heureusement, nous sommes encore loin du climat méditerranéen! En effet, jusqu'à présent, dans les Alpes du Nord, les précipitations étaient réparties tout au long de l'année avec des orages estivaux fréquents qui limitaient le dessèchement de la végétation.

De plus, 70 % des incendies observés dans les Alpes ont lieu en dehors de la période estivale. Il s'agit de petits feux de surface peu intenses essentiellement causés par des activités humaines (le plus souvent accidentellement). La période propice au développement de ces petits feux s'allonge avec le changement climatique, mais il ne faut pas pour autant s'attendre à une augmentation fulgurante de leur intensité.

Cependant, avec le changement climatique, les incendies estivaux peuvent devenir plus préoccupants surtout dans les fonds de vallées ou dans les massifs forestiers déjà affaiblis (tempêtes, sécheresses, avalanches, attaques d'insectes...). En effet, les années marquées par une sécheresse prononcée et des vagues de chaleurs successives devraient être de plus en plus fréquentes dans les prochaines décennies. Ces conditions météorologiques extrêmes favorisent l'éclosion d'incendies intenses couvrant des surfaces importantes. Nous en avons eu un exemple en 2003, avec les incendies du Néron (38) et de Champagny-en-Vanoise (73), tous deux déclenchés par la foudre en pleine canicule.



L'érosion torrentielle va s'accélérer

L'érosion torrentielle est conditionnée par les pluies de forte intensité, qui se produisent généralement au printemps et en été lors des épisodes orageux. Lorsque ces pluies s'abattent sur les versants dénudés des montagnes, elles mobilisent des masses importantes de terre et de débris rocheux qui vont être transportées par les torrents et qui peuvent menacer les populations à l'aval. En cas de recrudescence des orages du fait du changement climatique, on pourrait s'attendre à une amplification de l'activité des torrents. Mais cette activité est également contrôlée par deux autres paramètres qui jouent sur l'érosion des montagnes : la riqueur de l'hiver et la couverture forestière. Avec le réchauffement, l'action du gel sur la fracturation des falaises sera moindre. La couverture forestière s'est pour sa part largement étendue du fait de la déprise rurale et de la politique de lutte contre l'érosion

Un simple retour en arrière l'illustre : la montagne alpine produisait beaucoup plus de sédiments au Petit Âge Glaciaire qu'aujourd'hui (notamment aux 18 et 19° siècles), et de nombreux torrents se sont stabilisés sous l'effet combiné de la sortie du Petit Âge Glaciaire et de la reconquête forestière des versants.

Torrent de la Béoux dans la Drôme : le corridor boisé montre que le lit actif du torrent à la fin du 19° siècle était beaucoup plus large que le lit actuel, qui ne mesure que 10 m de large

C'est la chaleur qui fait fondre les glaciers

Vrai : c'est l'atmosphère qui fournit l'énergie responsable de la fonte selon différents phénomènes : le rayonnement infrarouge des basses couches de l'atmosphère (nuages, gaz à effet de serre d'origine naturelle ou humaine) ; le rayonnement solaire; la chaleur de l'air, mais qui n'apporte que peu d'énergie, car l'air est peu dense et pas très chaud en montagne ; la pluie ne fait pratiquement pas fondre les glaciers. Généralement, la combinaison de ces sources d'énergie est nécessaire pour faire fondre la neige et la glace. Mais s'il fait très chaud et qu'il y a du vent, alors le rayonnement infrarouge, plus intense, et la chaleur de l'air peuvent suffire, et la fonte peut avoir lieu la nuit. On observe cela lors de certains épisodes de canicules estivales.

Pas toujours vrai : en général, la neige et la glace s'évaporent à la surface des glaciers (les molécules d'eau passent directement de l'état solide à l'état gazeux). Cette évaporation fait perdre beaucoup d'énergie au glacier, ce qui limite donc sa fonte. Mais lorsque l'air est très humide, la vapeur d'eau atmosphérique se condense à la surface du glacier (comme du givre), engendrant une grosse source d'énergie qui accélère la fonte.

Par des processus différents, tous les glaciers sont affectés par le changement climatique et aujourd'hui la majorité perd de la masse et du volume, car la fusion estivale est plus importante que l'alimentation par les chutes de neige hivernales. Pour autant, tout n'est pas si simple quand on regarde la température des glaciers.

Les glaciers se réchauffent avec le climat

Le glacier de Sarenne (Alpe d'Huez) en 1906 et en 2016

Faux: la plupart des glaciers des Alpes sont, pour leur partie constituée de glace, à 0°C (au point de fusion), donc leur température ne change pas, et lorsqu'ils reçoivent de l'énergie de l'atmosphère (rayonnement solaire, rayonnement infra-rouge, circulation d'air chaud), ils fondent, mais demeurent à 0°C.

Archifaux: certains glaciers ont même tendance à se refroidir avec le réchauffement du climat! La diminution des précipitations de neige fait que la glace du glacier se refroidit pendant l'hiver (la neige est un très bon isolant). Il y a aussi moins d'eau de fonte provenant de cette neige qui normalement réchauffe beaucoup le glacier en fin d'hiver et au printemps.

Vrai : à haute altitude, au-dessus de 4000 m, c'est quand même vrai, car à ces altitudes, les glaciers sont froids (leur température est négative) et le réchauffement du climat augmente les températures des couches supérieures des glaciers, parfois même plus vite que les températures de l'atmosphère. La profondeur où se manifeste ce réchauffement dépend de l'accumulation de neige. Typiquement, le réchauffement à une échelle de 10 ans se répercute à une profondeur de 40 m. Pour les évolutions des températures à plus long terme (100 ans), c'est à plus de 100 m de profondeur que l'information est enregistrée.

Le changement en cours du climat, tel qu'on le perçoit aujourd'hui, se traduit par un réchauffement global de la planète : plus il fera chaud, moins il y aura de neige... jusqu'à disparaître? C'est un peu rapide!

D'abord, l'enneigement est très variable d'une saison à l'autre: les hivers se suivent, mais ne se ressemblent pas! Il y aura toujours des hivers enneigés en 2100, mais moins qu'aujourd'hui, moins souvent ou seulement à haute altitude. Les climatologues s'accordent pour dire que la quantité totale de précipitations (pluie et neige confondues) ne va probablement pas beaucoup changer. Par contre, s'il fait plus chaud, il pleuvra à une altitude donnée plus souvent qu'aujourd'hui - au lieu de neiger! -, ce qui fera moins de neige pour couvrir les montagnes. Une température plus élevée participera aussi à une fonte plus rapide de la neige. Les hivers seront donc en moyenne de moins en moins enneigés, en particulier en moyenne montagne.

Le climat reste pourtant un phénomène complexe et les projections fournies par les modèles de climat ne se traduisent pas forcément de manière directe au niveau local. Dans un contexte montagnard, ces effets sont d'autant plus difficiles à prévoir qu'ils dépendent également du relief qui peut conduire à des conditions météorologiques particulières. Il y aura donc en moyenne moins de neige, moins souvent et moins longtemps mais elle ne va probablement pas disparaître totalement!

Grâce aux enneigeurs, plus de problème de neige!

Pour skier, il faut de la neige, mais cette ressource est soumise à une forte variabilité d'une année sur l'autre. Pour s'en prémunir, les stations ont appris à mieux gérer la neige, et même à la produire. La neige doit être là quand les touristes arrivent! On la fabrique aussi pour faire venir les touristes en Australie ou en Afrique du Sud, voire de façon totalement artificielle comme dans le Ski dôme de Dubaï. S'il est possible de skier dans ces conditions, nul doute que nous pourrions continuer à le faire dans les montagnes françaises à la fin du siècle!

Mais produire de la neige a un coût et les ressources nécessaires à la production (l'eau, l'énergie) ne sont pas disponibles en quantité illimitée. Pour produire de la neige, il faut aussi qu'il fasse suffisamment froid. L'augmentation actuelle (et future) des températures amplifie le besoin de produire de la neige, mais diminue les périodes où la production est possible. Même s'il reste possible de fabriquer de la neige, celle-ci coûte plus cher si elle est produite à des températures plus élevées qui, en plus, la feront fondre plus vite! En outre, plus on produit de neige, plus il faut d'eau... Et il faut qu'il en reste aussi pour accueillir les touristes, auxquels cette neige est destinée, sans oublier les habitants qui vivent dans ces territoires!

En conclusion, oui, il est certainement possible de produire de la neige à n'importe quel prix. Encore faut-il que les touristes aient les moyens de l'acheter et que les impacts de cette production soient maîtrisés. Ce qui est possible dans des conditions exceptionnelles n'est certainement pas valable pour l'ensemble des stations.

Retenue d'altitude dans les Alpes

La montagne, un château d'eau inépuisable

Une idée couramment répandue consiste à penser que la création de retenues d'altitude renforcerait le rôle de château d'eau naturel joué par la montagne. Le principe est simple : on stocke l'eau quand elle est présente en quantité abondante et on la restitue quand la neige manque! Finalement, la neige de culture contribuerait directement à lutter contre l'impact du changement climatique sur la disponibilité de la ressource en eau en contribuant au stockage de l'eau.

Malheureusement, les choses ne sont pas si simples. L'eau captée pour l'enneigement ne peut plus être utilisée non seulement pour l eau potable ou l'agriculture, mais surtout pour l'accueil des touristes. Or, leur présence implique une pression accrue sur la ressource à une saison où elle est le moins disponible. Le risque est donc de produire de la neige sans pouvoir garantir les conditions d'accueil des touristes. Il faut donc trouver le juste équilibre.

Cette question de l'équilibre vaut également pour les écosystèmes, notamment les zones humides dont l'existence repose sur les modalités locales de répartition de l'eau. Déjà fragilisée par l'activité des stations (pression des skieurs, travaux sur le domaine skiable), toute modification du régime des eaux peut avoir des conséquences lourdes sur les zones humides.

La pratique du ski repose sur la présence d'un manteau neigeux suffisant. Confrontés à plusieurs hivers où les conditions n'étaient pas favorables, les exploitants de domaines skiables ont amélioré les techniques de gestion de la neige pour parvenir à ouvrir les pistes de ski avec moins de neige. La neige sur laquelle évoluent les skieurs a également des propriétés sensiblement différentes de celles des précipitations naturelles.

En premier lieu, cette neige est damée, c'est-à-dire que ses propriétés sont homogénéisées et qu'elle est compactée par le passage de la machine. Dans ces conditions, 10 cm de neige à la densité voulue pourraient suffire, mais il faut pour cela près de 40 à 50 cm de neige fraîche pour y parvenir, ne serait-ce que pour qu'il y ait dès le départ une quantité suffisante pour pouvoir la damer. La neige de culture permet souvent de créer une sous-couche afin de capitaliser les précipitations naturelles à venir. Cette neige a elle-même des propriétés particulières, notamment une densité bien plus élevée que la neige naturelle. Dès lors, une hauteur de neige moindre est nécessaire pour permettre le ski. Dans tous les cas, il est préférable de raisonner en termes de quantité (masse) de neige présente sur la piste. Pour cela les scientifiques privilégient l'usage de l'équivalent en eau exprimé en kg/m².

Enfin, il faut prendre en considération les caractéristiques des lieux dans lesquels des pistes sont ouvertes. Un sol plus accidenté requiert plus de neige qu'une surface plane. La plupart des pistes ont ainsi fait l'objet de travaux de terrassement pour les rendre plus lisses, sans trous ni bosses pour que la plus petite quantité de neige suffise. La pente constitue également un critère déterminant pour la résistance du manteau neigeux à l'érosion provoquée par le passage des skieurs.

Un enneigeur est une sorte de brumisateur géant qui pulvérise un nuage constitué d'une multitude de gouttelettes d'eau (liquide au départ) et d'air comprimé. Pour faire de la neige, le but consiste à congeler ces gouttelettes avant qu'elles n'aient le temps d'atteindre le sol. Pour y parvenir, il faut qu'il fasse froid... mais pas seulement!

La variable météorologique qui influe sur la capacité de congélation des gouttelettes d'eau (et permet donc de gérer la possibilité de produire de la neige) s'appelle la température « du thermomètre mouillé » ou température « humide ». Cette variable prend en compte la température de l'air sec (celle qui s'affiche sur un thermomètre de cuisine ou dans une voiture) et l'humidité de l'air (la quantité de vapeur d'eau dans l'air). Quand l'humidité relative est de 100% (quand il y a de la brume par exemple), ces deux températures sont égales; sinon la température humide est plus faible. En pratique, elle prend en compte la perte d'énergie nécessaire pour évaporer l'eau d'un chiffon maintenu humide en permanence. L'évaporation permanente d'une partie de l'eau pulvérisée par un enneigeur consomme l'énergie présente dans l'air et provoque ainsi son refroidissement, ce qui permet la congélation des gouttelettes non évaporées.

Ainsi, plus l'air est sec, plus la température humide est inférieure à la température de l'air sec. Par exemple, lorsque la voiture indique +1°C et qu'il y a 50% d'humidité (une belle journée ensoleillée), la température humide est -2.2°C, c'est la limite technique pour produire de la neige. Plus chaud, on ne peut pas si on utilise cette méthode de production! Tout dépend donc de quelle température on parle!

Les remontées mécaniques à l'abandon dans le futur

Fortement structuré autour des sports d'hiver, le massif des Alpes compte aujourd'hui, pour son versant français, près de 150 stations. La concurrence entre elles est rude, d'autant plus que, désormais, leur taux de fréquentation évolue peu. Contraintes de constamment améliorer leur offre touristique, nombreuses sont les stations à consentir d'importants travaux de modernisation de leur domaine skiable, se traduisant par l'installation d'enneigeurs pour fiabiliser l'enneigement ou encore par le remplacement de remontées mécaniques plus rapides et plus confortables. Cela étant, les projections de réchauffement climatique viennent questionner l'avenir de certaines stations. Dans ce schéma, que vont devenir les remontées mécaniques?

Loin de ne servir qu'au transport des skieurs, les remontées mécaniques sont d'ores et déjà utilisées en période estivale (voire hivernale dans le cas d'hivers peu enneigés) pour la pratique du VTT de descente ou encore pour faciliter (accessibilité des piétons au départ de randonnées. Ainsi, moyennant quelques adaptations pour permettre le transport de VTT ou de trottinettes, les remontées mécaniques pourront certainement trouver un nouveau rôle à jouer en cas de réchauffement impactant l'activité hivernale des stations. Si les innovations techniques en ce sens sont nombreuses, le modèle économique permettant une rentabilisation des (importants) investissements consentis reste quant à lui à inventer.

Adieu, les stations de moyenne montagne!

Construites entre les années 1930 et 1990 à des altitudes plus faibles que les « grandes » stations (essentiellement celles de Tarentaise), de nombreuses stations de moyenne montagne voient leur avenir questionné. Les hivers difficiles de ces dernières années, tout comme les projections d'évolution climatique annonçant une élévation de l'altitude à laquelle l'enneigement sera fiabilisé, viennent poser avec force la question de leur pérennité. Toutes les stations ne sont et ne seront pas pour autant impactées de la même manière par ce phénomène. Certaines d'entre elles parviennent ainsi à éviter les difficultés conjoncturelles, grâce notamment à des orientations géographiques, des équipements en neige de culture ou des modes de gestion favorables. D'autres au contraire ont déià franchi le pas : deux stations dans le massif des Alpes, Drouzet-le-Mont (74) et Valdrôme (26) ont ainsi tiré un trait sur une exploitation hivernale devenue trop incertaine. Elles n'ont cependant pas pour autant renoncé à toute forme d'activité touristique. Elles misent désormais sur différentes activités telles le VTT ou encore la randonnée en raquettes en période hivernale.

Alors oui, il est possible que des stations de moyenne montagne abandonnent l'exploitation hivernale de leurs remontées mécaniques dans les prochaines années. Mais rares sont celles qui mettront un terme à leur activité touristique!

La sécheresse, véritable danger pour les arbres des Alpes du Nord!

Les arbres étant très sensibles aux sécheresses extrêmes, le changement climatique menace la survie des forêts, particulièrement en montagne.

Cependant, sur les 80 dernières années, ce ne sont pas les sécheresses, mais les coups de vent extrêmes qui ont été le risque principal pour la survie des arbres dans les Alpes du Nord. Ces tempêtes sont en effet responsables des plus grandes pertes en forêt. Les sécheresses extrêmes, même celle de 2003, ont eu aussi un impact, mais beaucoup plus faible.

Ensuite, les modèles projettent que le changement climatique va multiplier la fréquence des tempêtes dans une bonne partie des Alpes du Nord. Donc même si l'intensité des sécheresses risque d'augmenter dans le futur, les coups de vents resteront probablement le risque principal et leur importance devrait même augmenter.

Les conditions météorologiques modulent l'impact des tempêtes. Dans des forêts très humides, les années avec de très fortes précipitations accentuent l'impact des tempêtes (la stabilité des arbres étant réduite dans des sols gorgés d'eau). Dans les forêts très sèches, ce sont les années peu arrosées qui accentuent cet impact, car la vigueur des arbres est réduite soit directement par la sécheresse, soit par les attaques d'insectes associées.

De manière générale, les événements de mortalité catastrophique en forêt sont déterminés par des perturbations (tempêtes, sécheresses, feux, insectes...). L'effet principal du changement climatique proviendra des interactions entre ces différentes perturbations.

Le bois est une énergie renouvelable. Sa combustion rejette le CO₂ stocké pendant sa croissance : le bilan carbone devrait donc être neutre

C'est aller un peu vite en besogne! D'abord, il faut que le bois brûlé provienne d'une forêt durablement gérée où le renouvellement est assuré. Ensuite, la transformation de l'arbre en combustible (abattage, débardage, découpe ou broyage, transport) utilise des énergies fossiles; le bois doit donc provenir d'une forêt proche pour minimiser le bilan carbone. Enfin, si le bois peut servir pour la charpente ou l'ameublement, il vaut mieux favoriser cette utilisation, car elle permet de stocker du carbone.

De plus, utiliser du bois provenant d'une forêt durablement gérée permet de respecter les autres fonctions de la forêt (accueil du public, conservation de la faune et de la flore, protection contre les risques naturels...).

En outre, un bon bilan carbone ne suffit pas à être écologique. La combustion du bois, lorsqu'elle est incomplète, est source de nombreux polluants atmosphériques (oxydes d'azote, monoxyde de carbone, composés organiques volatils). Pour une combustion complète, il faut un bois de qualité, suffisamment sec (taux d'humidité inférieur à 20 %) et non traité chimiquement. Ensuite, l'appareil de chauffage doit être efficace : les cheminées ouvertes anciennes, au rendement très faible, libèrent des éléments non consumés très polluants. À l'inverse, les poêles à bois modernes peuvent atteindre des rendements supérieurs à 80 % et chauffer les chalets de manière écologique.

En impactant directement la survie, la croissance et la régénération des espèces d'arbres, le changement climatique induit des changements de composition des forêts en faveur des espèces les plus tolérantes à la sécheresse ou occupant les milieux les moins vulnérables. On sait aujourd'hui que certaines espèces d'arbres sont plus affectées que d'autres par ce changement. C'est par exemple le cas de l'épicéa dans le Vercors qui devrait subir des mortalités plus importantes que le hêtre ou le sapin, deux autres espèces emblématiques des forêts de montagne.

Au cours du 21° siècle, le caractère méditerranéen du climat dans le Vercors devrait s'affirmer, notamment au sud. Des espèces comme le chêne pubescent (déjà présent) vont ainsi se développer et, en 2100, le chêne vert pourrait bien se sentir à sa place en basse altitude.

La relation climat-espèce n'est toutefois pas si simple. Les espèces ne se déplacent pas forcément à la vitesse du déplacement des aires climatiques. Elles peuvent être limitées par leur capacité de dispersion (graines). Ensuite, elles vont arriver sur des espaces déjà occupés ce qui pourrait également limiter leur installation par effet de compétition. Enfin, nous ne connaissons pas encore bien leurs capacités d'adaptation génétique au changement climatique et il est difficile d'estimer les risques réels d'extinction locale.

La limite entre forêts et alpages est naturelle et immuable

Contrairement à ce que l'on croit souvent, il y a peu de prairies « naturelles » en régions tempérées. La plupart sont le fait de l'homme et de ses activités, principalement agricoles.

C'est notamment le cas pour les Alpes, où la zone de prairies qui s'étend entre la limite supérieure de la forêt et les prairies naturelles d'altitude est souvent maintenue artificiellement. Les activités pastorales qui y sont développées permettent en effet de faire descendre les limites de la forêt de 150 à 300 m d'altitude par rapport à sa limite climatique.

Mais l'abandon du pastoralisme et le changement climatique favorisent désormais la remontée de la forêt et la fermeture du paysage. Ainsi, depuis le début du 20° siècle, la limite supérieure de la forêt s'est élevée de dizaines, voire de centaines de mètres dans les massifs européens, notamment sous l'effet de températures plus clémentes, qui ont entraîné une migration des espèces végétales.

Réveil précoce pour les marmottes

Le réchauffement climatique entraîne pour certaines zones des Alpes une fonte précoce de la neige en altitude au printemps. Cette neige qui bouchait autrefois les entrées des terriers des marmottes disparaît désormais plus tôt. Les marmottes en profitent pour sortir d'hibernation de plus en plus tôt entre fin mars et début avril. À cette période, les conditions leur permettent de trouver plus facilement de la nourriture et de se préparer rapidement à la saison des amours. C'est un vrai changement de comportement sous forme d'adaptation au réchauffement climatique pour ces marmottes alpines.

Mais attention, cela n'est valable que sur les zones où le déneigement est précoce.

Boup of 3000 CLEP'12

La douceur hivernale enchante les marmottes

Si la sortie de leur terrier est facilitée au printemps, on ne peut pas affirmer que l'hiver se passe mieux pour les marmottes du fait du changement climatique.

En effet, la couche de neige en surface est globalement de moins en moins épaisse en hiver. Or, cette couche de neige jouant un rôle d'isolant, il fait plus froid qu'avant dans les terriers des marmottes en hiver dans les Alpes. Les marmottes consomment alors beaucoup plus d'énergie pour se réchauffer. Les conséquences négatives directes de ce changement sont une réduction du poids des marmottes à la sortie de l'hiver. Or, il s'agit d'une période sensible car elle se situe juste avant la saison des amours. Ce phénomène participe donc à une baisse de la taille des portées au printemps suivant.

La vie est plus douce pour les animaux

Chaque animal abrite, au sein de son organisme et dans un certain équilibre, des parasites qui sont essentiels à son développement. Toutefois, quand cet équilibre est rompu, les défenses immunitaires des individus concernés peuvent diminuer et leur survie devient alors critique. Ces dernières années, et notamment sur les massifs préalpins, ce phénomène semble devenir particulièrement marqué chez le lagopède alpin, oiseau relique des dernières glaciations qui est présent en France dans les Alpes et les Pyrénées et dont l'aire de répartition s'étend jusqu'au cercle polaire. Depuis quelque temps, des études ont montré que les oiseaux de ces massifs présentaient des taux de parasites largement supérieurs à la normale et un taux de survie inférieur par rapport aux autres populations de lagopèdes vivants dans les massifs internes.

À moyen terme, on peut imaginer que les effets du changement climatique à haute altitude risquent de perturber cet équilibre parasitaire et d'impacter plus rapidement ces populations d'oiseaux très sensibles à leur environnement.

Oiseaux bientôt sans domicile

Le changement climatique a une influence marquée sur la modification des milieux montagnards. C'est particulièrement vrai pour les milieux semi-ouverts de l'étage subalpin où la lenteur du développement de la végétation est particulièrement marquée. Or il se trouve que ces habitats à l'équilibre fragile sont des milieux de vie indispensables à certaines espèces qui y sont strictement liées.

C'est le cas du tétras-lyre, espèce sédentaire de montagne, ou encore du merle à plastron, espèce migratrice. Pour ces deux espèces, des diminutions de leurs effectifs sont constatées depuis plusieurs années et c'est notamment cette perte de milieu spécifique qui serait un des facteurs de cette évolution des populations.

Chez les oiseaux qui vivent toute l'année en montagne, l'hiver est une période particulièrement sensible pour leur survie. Les conditions difficiles les obligent à s'adapter et les espèces ont développé différentes stratégies pour y faire face.

C'est le cas par exemple du tétras-lyre, dont l'habitat est situé tout au long de l'année à la limite supérieure de la forêt. Pour faire face à l'hiver, cet oiseau est capable de creuser des petites loges dans la neige où il va s'abriter. Dans cet abri, l'oiseau profite du pouvoir isolant du manteau neigeux et économise ses réserves énergétiques, tout en passant inaperçu aux yeux d'éventuels prédateurs. Or, avec les fortes variations de températures et de précipitations engendrées par le changement climatique, le manteau neigeux, moins épais et plus lourd, ne conviendra plus à l'oiseau qui a besoin d'une neige légère pour s'y enfouir.

Le lagopède alpin, appelé communément perdrix des neiges, est une espèce relique de la dernière ère glaciaire qui change de plumage dans l'année pour être gris l'été et blanc l'hiver. C'est une stratégie de camouflage pour éviter notamment les prédateurs. En hiver, il est donc difficile d'apercevoir un lagopède au plumage blanc, complètement immobile dans la neige. Mais le changement climatique change un peu la donne avec des chutes de neige qui tardent à arriver en automne alors que le lagopède est déjà blanc. À cette période, il est parfois possible de les observer puisque leur camouflage n'est plus tout à fait adapté à leur environnement.

Selon les conditions météorologiques automnales, il est donc parfois plus aisé qu'avant d'apercevoir le lagopède en début d'hiver et ce malgré le fait qu'il soit tout blanc.

Même à sang froid, on n'aime pas le chaud

Les amphibiens sont des animaux dits « à sang froid », ce qui signifie qu'ils ont besoin de la chaleur extérieure pour survivre. On pourrait alors imaginer qu'un réchauffement du climat leur serait favorable.

Toutefois, les amphibiens de montagne comme la grenouille rousse ou le triton alpestre ont développé des mécanismes d'adaptation au froid au niveau de leur comportement, de leur cycle de vie et de leur physiologie. On peut donc les trouver jusqu'à de très hautes altitudes, parfois au-delà de 2500 m! Ces animaux vivent dans les zones humides de montagne qui font partie des milieux les plus menacés par le changement climatique. La régression de ces milieux a donc un impact direct sur les populations d'amphibiens.

Déséquilibre en vue au royaume des petits organismes

En forêts de montagne, une large diversité d'espèces souvent très discrètes et méconnues coexiste (insectes, lichens, champignons, vers de terre...). Cette biodiversité joue pourtant un rôle fondamental dans le fonctionnement des écosystèmes et le changement climatique pourrait bouleverser cet équilibre.

Des températures plus chaudes favoriseraient en effet certaines espèces, comme les insectes, qui verraient leur population augmenter. À l'inverse, des espèces nécessitant des conditions fraîches, comme les macrolichens, seraient fortement impactées et leur population déclinerait. Ce déséquilibre, s'il était généralisé, compromettrait plus généralement le bon fonctionnement des écosystèmes forestiers alpins en modifiant les interactions entre espèces (chaîne alimentaire, recyclage des éléments). Cela accentuerait un peu plus l'effet du changement climatique, avec des conséquences en cascades sur l'ensemble des espèces forestières, oiseaux et mammifères inclus.

Spontanément, la réponse est oui : plus le climat se réchauffe, moins il y a d'épisodes de gel. Pourtant, il y a bien un problème avec le gel...

Sur les alpages, très haut en altitude, il gèle tout l'hiver, ce qui n'est pas gênant si la neige recouvre la végétation et la protège. Or, avec le changement climatique, la durée de l'enneigement diminue et son effet protecteur dure moins longtemps. Il est donc à craindre que la végétation soit plus exposée au gel après le déneigement, d'autant plus que la végétation redémarre plus vite. C'est le même principe que pour les arbres fruitiers, qui débourrent de plus en plus tôt et sont de plus en plus exposés au gel au printemps.

Ce phénomène pose plusieurs problèmes. La végétation qui a gelé perd en qualité fourragère durant la saison d'alpage qui suit le gel et devient moins productive. De plus, ces phénomènes de gel, s'ils se répètent ou sont cumulés avec des sécheresses, peuvent conduire à des dégradations de végétation préjudiciables au pâturage des troupeaux et à la biodiversité.

Aujourd'hui, il reste difficile de prédire avec certitude si les épisodes de gel après le déneigement vont réellement devenir de plus en plus fréquents ; cela restera peut-être un phénomène localisé dans l'espace. C'est en tout cas un phénomène qu'il convient de surveiller attentivement dans les années à venir.

Herbe à gogo pour les vaches...

En plaine, les modèles scientifiques montrent que globalement, il devrait y avoir plus d'herbe avec le changement climatique dans les décennies à venir : il y aura moins d'herbe l'été à cause des sécheresses, mais l'hiver sera plus court et le printemps et l'automne seront plus productifs. En montagne, on ne sait pas très bien, mais on peut supposer sans trop prendre de risque que ce sera la même chose. Pour autant, ça ne fera pas forcément plus d'herbe pour les vaches ou les moutons!

En plaine et en moyenne montagne, on a généralement un surplus d'herbe, au printemps surtout. Les éleveurs récoltent ce surplus et le redistribuent durant les creux de production, en hiver, et de plus en plus souvent aussi en été.

Sur les alpages, à cause de la pente et des difficultés d'accès, on ne peut pas récolter le surplus éventuel d'herbe au printemps. Si une sécheresse survient au cœur de l'été, il faudra donc faire consommer ce surplus sous forme d'herbe sèche sur place dans les alpages. C'est ce que font déjà les bergers, mais cela a des limites.

Il ne sera de plus pas forcément possible de monter les troupeaux en alpage beaucoup plus tôt dans la saison pour profiter de cette herbe de printemps, d'abord parce que le risque de coups de froid restera fort, ensuite parce que les éleveurs devront aussi gérer les surplus de printemps sur leurs exploitations à plus basse altitude!

Au final, on peut donc craindre que de plus en plus d'herbe ne soit pas pâturée en alpage!

Une prairie peut en cacher une autre

VRAI

Les modèles écologiques suggèrent que le changement climatique va conduire à des évolutions de végétation dans tous les écosystèmes. Les étages de végétation vont remonter, certaines espèces migrer du sud...

Toutefois quelques études à long terme montrent que jusqu'à présent, la végétation d'alpage est relativement stable face au changement climatique. En effet, ces milieux n'évoluent pas que sous l'effet du climat. Dans nos pays, ils se transforment aussi sous l'effet des activités humaines, notamment pastorales. Le pâturage des troupeaux, organisé par l'homme depuis parfois plus de mille ans, a façonné ces écosystèmes. Les activités pastorales ont un rôle plus important dans la stabilité ou l'évolution de ces milieux que le changement climatique. Ces pratiques sont le pâturage par les troupeaux, mais aussi la fertilisation apportée par leurs déjections, le débroussaillement ponctuel... et sont parfois en mesure de contrebalancer les effets du changement climatique.

Cela signifie que par des pratiques adaptées, il est possible de continuer à préserver la biodiversité unique des alpages et de limiter les impacts potentiellement négatifs du changement climatique sur ces espaces.

 $Plusieurs\ facteurs\ se\ conjuguent\ pour\ expliquer\ l'augmentation\ des\ besoins\ en\ eau\ des\ brebis\ en\ alpage.$

Sous l'effet du changement climatique, les périodes de fortes chaleurs et de sécheresses estivales seront plus fréquentes. La contribution de l'herbe, plus rare et moins verte, à l'abreuvement des brebis sera réduite, alors que simultanément les sources tariront plus vite.

Autrefois, les races rustiques étaient de petite taille et plus résistantes à la soif. Or, la taille des animaux tend à augmenter, et donc leur besoin individuel en eau également.

Ces animaux se dispersaient aussi au petit matin pour s'abreuver de la rosée, ce qui pouvait leur suffire. Les observations montrent que dans un air plus sec, la rosée est moins abondante. De plus, les bergers sont maintenant obligés de parquer les animaux pendant la nuit pour les protéger contre les prédateurs. Ils ne peuvent donc plus profiter de la rosée.

Aussi, afin de maintenir la pression pastorale et l'ouverture des milieux, les gestionnaires d'alpages ovins demandent de plus en plus souvent l'aménagement de points de stockage pour l'eau pour assurer l'abreuvement des animaux.

Le carbone du sol, régulateur du climat

L'évolution du stock de carbone organique dans les sols résulte de l'équilibre entre le volume des apports végétaux (fixation) et la vitesse de dégradation de ce carbone par l'activité biologique (minéralisation).

En montagne, on sait que la fixation du carbone va augmenter avec le changement climatique: augmentation des apports par les végétaux tombés au sol et incorporés dans le sol dû à la fixation plus importante du CO, atmosphérique par les arbres (meilleure productivité des forêts) mais aussi déprise agro-pastorale qui favorise l'expansion des forêts.

La minéralisation et l'activité biologique des sols seraient pour leur part dopées par l'augmentation de la température et des précipitations, ce qui ferait stocké en direction de l'atmosphère.

En définitive, la balance entre fixation et minéralisation du carbone est difficile à prévoir. On est donc pour l'instant bien incapable de dire s'il y aura toujours autant de carbone dans les sols de montagne.

La chaleur favorise les invasions biologiques

On a longtemps considéré que les montagnes étaient préservées des invasions biologiques car leurs conditions climatiques extrêmes empêchaient les nouvelles espèces introduites d'y survivre et de s'y étendre. Pourtant, parmi les espèces exotiques envahissantes (les fameuses « espèces invasives »), nombreuses sont celles provenant d'une région montagnarde. On sait désormais que ce qui a, jusque-là, protégé les écosystèmes d'altitude des invasions biologiques, ce n'est pas le climat difficile de ces milieux, mais plutôt le fait que moins de graines ou de fragments de plantes, et moins d'œufs ou d'animaux adultes sont introduits dans ces milieux car l'homme y est simplement moins présent. Cependant, la pression anthropique dans les massifs montagneux ne cesse d'augmenter et, avec elle, le nombre d'invasions. C'est d'ailleurs à proximité des routes et des stations touristiques que l'on retrouve désormais le plus d'espèces exotiques en montagne.

Néanmoins, la progression en montagne des espèces exotiques envahissantes tient donc plus de leur dispersion liée à l'homme que du changement climatique en lui-même, même si insidieusement, elles en profitent également.

Les milieux humides n'appartiennent ni au monde aquatique ni au monde terrestre : ils se situent à l'intersection des deux. En montagne, ils sont de petite taille et dispersés. Selon leur mode d'alimentation en eau, on distingue les bordures de lacs, sources et ruisseaux, partout où l'eau déborde. Viennent ensuite les milieux où l'eau n'est pas visible, mais où les sols en sont gorgés : en moyenne montagne, ce sont les prairies humides entretenues par la fauche, les mégaphorbaies, les roselières et plus haut, les tourbières et marais d'altitude.

Les milieux humides de montagne dépendent en partie de la fonte de la neige et des glaciers. La modification de la pluviométrie avec notamment une moindre quantité de neige en hiver et la disparition de certains glaciers menacent leur fragile équilibre. En parallèle, le piétinement par les hommes ou les animaux domestiques modifie les sols [tassement, apport d'azote...] et l'hydrologie de ces milieux, d'où une banalisation de la végétation. Enfin, le développement des stations de ski entraîne fréquemment leur destruction, soit directement, par le comblement des dépressions marécageuses pour en occuper l'emplacement [bâtiments, plans d'eau, remontées mécaniques, pistes de ski, pistes de VTT...], soit indirectement par la modification des cours d'eau (diversion, surcreusement, qualité de l'eau...]. Préserver les tourbières pose donc le défi de l'adaptation au changement climatique, mais surtout celui d'une meilleure prise en compte de ces milieux dans les aménagements.

Pour la revégétalisation, peu importe l'origine des graines semées

Pour la restauration de prairies et pelouses d'altitude dégradées, les mélanges de semences utilisés sont généralement issus de la multiplication d'espèces inadaptées aux écosystèmes de montagne et à leurs conditions climatiques, et de provenances non identifiées. Ces mélanges sont peu diversifiés en espèces en comparaison avec le milieu naturel et d'origine, et induisent des risques d'hybridation avec les espèces locales, ce qui amène une pression supplémentaire sur la biodiversité de montagne.

Les mélanges de semences sauvages, qu'ils soient issus de la multiplication ou de la récolte directe, comportent plus d'espèces et plus de diversité génétique que les mélanges commerciaux composés de cultivars de plaine. Cette diversité s'accompagne d'une meilleure adaptation aux conditions bioclimatiques des étages montagnards, subalpins et alpins d'où les semences locales sont issues. À court ou moyen terme, les mélanges de semences locales amènent un recouvrement du sol sensiblement plus élevé que les mélanges exogènes, ce qui permet à la fois un meilleur maintien du sol par les racines, et une meilleure tenue du manteau neigeux par le couvert végétal. Enfin, les prairies diversifiées produisent des fourrages ou des pâturages de bonne qualité et comportent une flore intéressante pour l'apiculture. La présence d'espèces et d'écotypes précoces et tardifs échelonne les floraisons et diversifie les paysages de montagne... Autant de points forts pour l'adaptation au changement climatique.

On peut tout réparer, même les écosystèmes

Un écosystème est constitué d'un environnement (sol, eau, air...), d'espèces vivantes (animaux, végétaux, bactéries...) et de toutes les interactions de ces éléments. C'est donc une entité très complexe. Lorsqu'un écosystème est impacté, que ce soit par des changements d'usages ou par le changement climatique, la qualité et la quantité de chacun de ses éléments changent. Par exemple, certaines espèces apparaissent, d'autres disparaissent, le sol devient moins fertile ou la quantité d'eau change. La restauration d'un écosystème a pour objectif de lui permettre de retrouver l'ensemble de ses propriétés : qualité, quantité et toutes les interactions.

Bien qu'après certains impacts, et en attendant longtemps, l'écosystème peut se restaurer tout seul, il est souvent nécessaire d'intervenir. Dans un premier temps il est alors préférable de se focaliser sur l'environnement, comme restaurer la qualité de l'eau, puis il sera sans doute nécessaire de réintroduire les bonnes espèces dans l'écosystème. La restauration écologique réhabilitera certaines propriétés de l'écosystème.

Néanmoins, comme le montrent de plus en plus d'études, il apparaît illusoire d'imaginer restaurer un écosystème dans toute sa complexité, même en attendant très, très longtemps. La restauration est un plus, mais n'est pas la panacée : mieux vaut donc limiter nos impacts sur les écosystèmes!

Les éboulis froids (lentille de glace permanente dans le sol) sont reconnus pour leur intérêt écologique (flore rare et protégée). Face aux changements climatiques, on essaie d'évaluer leur capacité de résistance. Des études ont été menées sur un site d'éboulis froid, dont la lentille de glace a été altérée par des travaux remontant aux années 70. Elles montrent une augmentation de la température moyenne annuelle de 4° du sol sur la partie haute de l'éboulis, déconnectée de la lentille de glace par les travaux. On constate aussi une augmentation de l'abondance des acariens du sol. Par contre, les vers de terre du sol, les végétaux présents et le sol (matelas d'humus) restent identiques sur tout le site. Ce travail apporte un éclairage important sur la stabilité de ces écosystèmes. En effet, là où la lentille de glace fond, une partie seulement de la vie du sol se modifie. Ainsi, la faune du sol peut constituer un indicateur précoce de ces changements, mais l'éboulis froid avec son sol et sa végétation particulière peuvent résister beaucoup plus longtemps.

Au cours des dernières années, les scientifiques ont maintes fois constaté sur le terrain la disparition, l'adaptation, voire la prolifération d'espèces ou de phénomènes naturels. N'en déplaise aux climatosceptiques, nous le devons en grande partie au changement climatique et plus généralement au changement global. La montagne y est particulièrement sensible, car elle est structurée par ses différentes altitudes et ses écosystèmes sont fragiles. Pour beaucoup, elle représente de beaux paysages, une biodiversité remarquable, des traditions et aussi de belles vacances « à la neige ». Mais c'est aussi une source de danger, avec les avalanches, les chutes de pierres, les érosions torrentielles...

Ces risques vont-ils augmenter ou au contraire disparaître?

Y aura-t-il toujours de la neige? Que vont devenir les marmottes?

Qu'est-ce qui change?

Vous en saurez plus en parcourant ces pages conçues par le centre Irstea de Grenoble pour vous aider à démêler le vrai du faux.

Nicole Sardat

Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture

Contact:

Centre de Grenoble - 2 rue de la Papeterie - BP 76 - 38402 St-Martin-d'Hères cedex nicole.sardat@irstea.fr